First in Human Experience with alfapump DSR System in Diuretic Resistant Chronic Heart Failure
NCT04116034

Jeffrey Testani, Veena Rao, Juan Ivey-Miranda, Jeffrey Turner, Devin Mahoney, Fredric Finkelstein, Christopher McIntyre, Tamaz Shaburishvili, Tamar Bigvava, Jozef Bartunek

Presenter: Jeffrey M. Testani, MD, MTR
Study Sponsor: Sequana Medical
Study PI: Jozef Bartunek
Disclosures

• **Related to the presentation:** Research funding and personal fees from Sequana Medical
• **Unrelated to the presentation:** Grants and personal fees from 3ive labs, personal fees from Bayer, grants and personal fees from Boehringer Ingelheim, grants and personal fees from Bristol Myers Squibb, personal fees from Astra Zeneca, personal fees from Novartis, personal fees from Cardionomic, personal fees from MagentaMed, grants and personal fees from Reprieve medical, grants and personal fees from FIRE1, personal fees from W.L. Gore, grants and personal fees from Sanofi, grants from Otsuka, grants from Abbott, grants and personal fees from Merck, personal fees from Windtree Therapeutics, personal fees from Lexicon pharmaceuticals, personal fees from Precardia, personal fees from Edwards, Personal fees from BD; In addition, Dr. Testani has a patent Treatment of diuretic resistance issued to Yale and Corvidia Therapeutics Inc, a patent Methods for measuring renalase issued to Yale, and a patent Treatment of diuretic resistance submitted by Reprieve Medical
Heart Failure: Can we do better than diuretics?

- On a population level, symptoms and hospitalizations are driven by volume overload
 - Loop diuretics are the mainstay of therapy
 - Well described toxicity
 - Resistance is common
- Long list of failed cardio-renal therapeutics has accumulated over the last decade
 - A new pill that replaces the loop diuretics is not likely soon
- Sodium removal through non-renal routes is an attractive option
 - Veno-Venous ultrafiltration has been explored;
 » Not an ideal chronic therapy
 - Peritoneal dialysis for chronic volume maintenance has had low levels of interest
Why is peritoneal dialysis (PD) not used more frequently in heart failure?

- Standard PD has several limitations:
 - Large volumes (~8 to 10 liters) and long dwell times with the patient connected to PD cycler
 - External catheter with infection risks
 - Dialysis stigma
- Many of these limitations stem from the fact that PD is designed primary to “clean” the blood rather than control volume
Can we use the peritoneal membrane more efficiently to directly remove sodium in HF patients?

- Most HF patients have acceptably functioning kidneys
 - No need to “clean” the blood
- Standard PD solutions have ~7.5 grams of salt per liter
 - Nearly isotonic to plasma (~132 mmol/L) thus a small gradient for sodium to diffuse
- By using a zero sodium osmotic solution we can achieve much more efficient sodium removal
 - Large concentration gradient driving diffusion of sodium (~140 mmol/L to 0 mmol/L)
Proof of concept study: DSR vs. Standard PD solution

Rao Circulation 2020
Study Design:

Primary objective: To understand the safety and tolerability of *serial* treatment with alfapump® DSR therapy in chronic stable diuretic resistant HF patients

Secondary objective: To understand the impact of serial treatment with alfapump DSR therapy on parameters of cardio-renal function and diuretic response

Study Design: Prospective first in human feasibility study in up to 10 participants

Number of centers: 2
The alfapump Device:

Study utilized the alfapump® (Sequana Medical)

- Fully implanted transcutaneously chargeable system developed for refractory and malignant ascites
 - Over 800 systems implanted and hundreds of patient years experience to date

1. Administration of DSR solution into peritoneal cavity via subcutaneous port
2. Sodium enters DSR solution via diffusion and ultrafiltration
3. alfapump® clears sodium-rich fluid into the bladder which is eliminated by urination
Study Timeline

- **Screening**: D ~ 14
- **alfapump Implantation**: D-3
- **Diuretic challenge**: D0
- **Initial DSR**: D7
- **In-hospital (3g sodium diet)**: D14
- **Diuretic challenge**: D39
- **Diuretic challenge**: D42
- **In-clinic DSR**: D56

- **In-hospital (5g sodium diet)**

- **Diuretic challenge**: D39

- **Safety Follow-Up visit**: D56

- **Loop diuretics stopped**: D7

- **Loop diuretics restarted as needed**: D56

- **Three times a week DSR**: D0, D7, D14, D39, D42, D56
Key inclusion/exclusion criteria

Inclusion:
1. eGFR > 30ml/min/1.73m²
2. Diagnosis of heart failure with one of the following: nt-proBNP > 400 pg/ml (or BNP > 100 pg/ml) and oral diuretic dose ≥ 80mg furosemide equivalents OR Oral diuretic dose ≥ 120mg furosemide equivalents
3. Stable diuretic dose for 30 days
4. Systolic blood pressure ≥ 100 mmHg
5. Determined by treating provider to be at optimal volume status

Exclusion:
1. Serum sodium < 135 mEq/L
2. Severe hyperkalemia or baseline plasma potassium > 4.5 mEq/L
3. History of significant bladder dysfunction expected to interfere with ability of subject to tolerate DSR pumping into bladder
4. Uncontrolled diabetes with frequent hyperglycemia or Type 1 diabetes
Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>N=8</th>
<th>Result</th>
<th>Min : Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age – Years (Mean ±SD)</td>
<td></td>
<td>61.9 ± 8.5</td>
<td>49 : 77</td>
</tr>
<tr>
<td>Male - %</td>
<td></td>
<td>100</td>
<td>N/A</td>
</tr>
<tr>
<td>Height – cm (Mean ±SD)</td>
<td></td>
<td>172.8 ± 5.7</td>
<td>163 : 182</td>
</tr>
<tr>
<td>Weight – kg (Mean ±SD)</td>
<td></td>
<td>75.4 ± 17.7</td>
<td>53.0: 107.8</td>
</tr>
<tr>
<td>BMI – kg/m² (Mean ±SD)</td>
<td></td>
<td>25.2± 4.8</td>
<td>19.1 : 32.6</td>
</tr>
<tr>
<td>Ejection Fraction - % (Mean ±SD)</td>
<td></td>
<td>24.4 ± 3.1</td>
<td>20 : 28</td>
</tr>
<tr>
<td>Nt-proBNP - pg/mL (Mean ±SD)</td>
<td></td>
<td>4589 ± 2945</td>
<td>1536 : 8831</td>
</tr>
<tr>
<td>eGFR – ml/min/1.73 m² (Mean ±SD)</td>
<td></td>
<td>68 ± 19</td>
<td>37 : 96</td>
</tr>
<tr>
<td>Hematocrit - % (Mean±SD)</td>
<td></td>
<td>43.9 ± 7.48</td>
<td>32.5 : 55.2</td>
</tr>
<tr>
<td>Furosemide equivalents – mg (Mean ±SD)</td>
<td></td>
<td>322.5 ± 263.3</td>
<td>80 : 800</td>
</tr>
</tbody>
</table>
Safety and tolerability

Tolerability:
• Overall the serial DSR procedure was well tolerated aside from mild discomfort in one patient toward the end of pumping

Adverse events of relevance to DSR therapy:
• There were no heart failure, renal, or electrolyte related adverse events

Device/implant related adverse events: 4 in 3 patients
 – 2x SAE blockage of peritoneal catheter in one patient
 – 1x site AE hematoma
 – 1x AE hematuria

Other SAEs: 2 in 2 patients
 – 1x SAE TIA in pt. 007 (day 29)
 – 1x SAE Sudden Cardiac Death (day 3)
Efficacy:

• All patients were able to remain off loop diuretics for the entire 6-week study period
• A neutral sodium balance during the 2 week in-hospital period was achieved (-1.3 grams)
• Stable weight over the duration of the study was achieved (75.6 to 75.5 kg)
• Most patients had down titration of DSR therapy to maintain constant weight
 – Average 10% dextrose volume 750 ± 348 ml/treatment
Temporal trends of improvement:

- **Urea**
- **Creatinine**
- **NT-proBNP**

<table>
<thead>
<tr>
<th>Creatinine</th>
<th>pg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>60</td>
</tr>
<tr>
<td>0.0</td>
<td>55</td>
</tr>
<tr>
<td>0.5</td>
<td>50</td>
</tr>
<tr>
<td>1.0</td>
<td>45</td>
</tr>
<tr>
<td>1.5</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NT-proBNP</th>
<th>pg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>5000</td>
</tr>
<tr>
<td>0.0</td>
<td>4500</td>
</tr>
<tr>
<td>0.5</td>
<td>4000</td>
</tr>
<tr>
<td>1.0</td>
<td>3500</td>
</tr>
<tr>
<td>1.5</td>
<td>3000</td>
</tr>
</tbody>
</table>

p < .001

Heart Failure

World Congress on Acute Heart Failure 2021
The improvement in diuretic response was durable

<table>
<thead>
<tr>
<th>Subject</th>
<th>Daily Dose of loop diuretics (mg)**</th>
<th>During DSR Treatment (D0 - 42)</th>
<th>Time since last DSR study treatment**</th>
<th>Current Daily dose (mg)***</th>
<th>Reduction in diuretic dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-001</td>
<td>80</td>
<td>0</td>
<td>12.5 months</td>
<td>40</td>
<td>-50 %</td>
</tr>
<tr>
<td>101-002</td>
<td>200</td>
<td>0</td>
<td>12.5 months</td>
<td>80</td>
<td>-60 %</td>
</tr>
<tr>
<td>101-003</td>
<td>400</td>
<td>0</td>
<td>10 months</td>
<td>80</td>
<td>-80 %</td>
</tr>
<tr>
<td>101-005</td>
<td>120</td>
<td>0</td>
<td>10.5 months</td>
<td>40 every 3rd day</td>
<td>-89 %</td>
</tr>
<tr>
<td>101-006*</td>
<td>80</td>
<td>0</td>
<td>8.5 months</td>
<td>0</td>
<td>-100 %</td>
</tr>
<tr>
<td>101-007*</td>
<td>300</td>
<td>0</td>
<td>2 months</td>
<td>40 three times a week</td>
<td>-94 %</td>
</tr>
<tr>
<td>101-008*</td>
<td>600</td>
<td>0</td>
<td>2 months</td>
<td>80</td>
<td>-87 %</td>
</tr>
<tr>
<td>101-009†</td>
<td>800</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

*excluding DSR treatment in follow-up extension **loop diuretics in furosemide equivalents (mg)
Conclusion

• Six weeks of alfapump DSR therapy was overall well tolerated and successfully maintained a neutral sodium balance and stable body weight, despite complete withdraw of loop diuretics

• A significant benefit to cardio-renal function was observed with meaningful improvement in NT-proBNP and renal function

• Diuretic resistance improved substantially and durably

• Additional research is warranted to better understand the cardio-renal benefits of alfapump DSR therapy and the application to HF patients