sequana medical

The challenge of diuretic resistance in the management of heart failure patients and the potential for alfapump[®] DSR therapy

Key Opinion Leader Webinar with Jeffrey Testani, MD, MTR 11 December 2020

Disclaimers

Important Notice

IMPORTANT: You must read the following before continuing. The following applies to this document, the oral presentation of the information in this document by Sequana Medical NV (the "Company") or any person on behalf of the Company, and any question-and-answer session that follows the oral presentation:

- This presentation has been prepared by the management of the Company. It does not constitute or form part of, and should not be construed as, an offer, solicitation or invitation to subscribe for, underwrite or otherwise acquire, any securities of the Company or any member of its group nor should it or any part of it form the basis of, or be relied on in connection with, any contract to purchase or subscribe for any securities of the Company or any member of its group, nor shall it or any part of it form the basis of or be relied on in connection with any contract or commitment whatsoever. Prospective investors are required to make their own independent investigations and appraisals of the business and financial condition of the Company and the nature of its securities before taking any investment decision with respect to securities of the Company. This presentation is not a prospectus or offering memorandum.
- The information included in this presentation has been provided to you solely for your information and background and is subject to updating, completion, revision and amendment and such
 information may change materially. No person is under any obligation or undertaking to update or keep current the information contained in this presentation and any opinions expressed in
 relation thereto are subject to change without notice. No representation or warranty, express or implied, is made as to the fairness, accuracy, reasonableness or completeness of the information
 contained herein. Neither the Company nor any other person accepts any liability for any loss howsoever arising, directly or indirectly, from this presentation or its contents.
- The presentation also contains information from third parties. Third party industry publications, studies and surveys may also contain that the data contained therein have been obtained from sources believed to be reliable, but that there is no guarantee of the accuracy or completeness of such data. While the Company reasonably believes that each of these publications, studies and surveys has been prepared by a reputable source, the Company, or any of their respective parent or subsidiary undertakings or affiliates, or any of their respective directors, officers, employees, advisers or agents have independently verified the data contained therein. Thus, while the information from third parties has been accurately reproduced with no omissions that would render it misleading, and the Company believes it to be reliable, the Company cannot guarantee its accuracy or completeness. In addition, certain of the industry and market data contained in this presentation comes from the Company's own internal research and estimates based on the knowledge and experience of the Company's management in the market in which the Company operates. While the Company reasonably believes that such research and estimates are reasonable and reliable, they, and their underlying methodology and assumptions, have not been verified by any independent source for accuracy or completeness and are subject to change without notice. Accordingly, undue reliance should not be placed on any of the industry, market or competitive position data contained in this presentation.
- This presentation includes forward-looking statements that reflect the Company's intentions, beliefs or current expectations concerning, among other things, the Company's results, condition, performance, prospects, growth, strategies and the industry in which the Company operates. These forward-looking statements are subject to risks, uncertainties and assumptions and other factors that could cause the Company's actual results, condition, performance, prospects, growth or opportunities, as well as those of the markets it serves or intends to serve, to differ materially from those expressed in, or suggested by, these forward-looking statements. These statements may include, without limitation, any statements preceded by, followed by or including words such as "target," "believe," "expect," "aim," "intend," "may," "anticipate," "estimate," "plan," "project," "will," "can have," "likely," "should," "would," "could" and other words and terms of similar meaning or the negative thereof. The Company operates may differ materially from those made in or suggested by the forward-looking statements contained in this presentation. In addition, even if the Company's results, condition, and growth and the development of the industry in which the Company operates are consistent with the forward-looking statements contained in this presentation. In addition, even if the Company's results, or developments may not be indicative of results or developments in future periods. The Company and each of its directors, officers and employees expressly disclaim any obligation or undertaking to review, update or release any update of or revisions to any forward-looking statements in this presentation or any change in events, conditions or any change in events, arequired by applicable law or regulation.
- This document and any materials distributed in connection with this document are not directed to, or intended for distribution to or use by, any person or entity that is a citizen or resident of, or located in, any locality, state, country or other jurisdiction where such distribution, publication, availability or use would be contrary to law or regulation or which would require any registration or licensing within such jurisdiction. The distribution of this document in certain jurisdictions may be restricted by law and persons into whose possession this document comes should inform themselves about, and observe any such restrictions.
- The Company's securities have not been and will not be registered under the US Securities Act of 1933, as amended (the "Securities Act"), and may not be offered or sold in the United States absent registration under the Securities Act or exemption from the registration requirement thereof.
- By attending the meeting where this presentation is presented or by accepting a copy of it, you agree to be bound by the foregoing limitations.

Disclaimers

Regulatory disclaimer:

- The alfapump[®] system has not yet received regulatory approval in the United States and Canada. Any statement in this presentation about safety and efficacy of the alfapump[®] system does not apply to the United States and Canada. In the United States and Canada, the alfapump[®] system is currently under clinical investigation (POSEIDON Study) and is being studied in adult patients with refractory or recurrent ascites due to cirrhosis. For more information regarding the POSEIDON clinical study see <u>www.poseidonstudy.com</u>.
- The DSR therapy is still in development and it should be noted that any statements regarding safety and efficacy arise from ongoing pre-clinical and clinical investigations which have yet to be completed. The DSR therapy is not currently approved for clinical research in the United States or Canada. There is no link between the DSR therapy and ongoing investigations with the **alfa**pump[®] system in Europe, the United States or Canada.

COVID-19 disclaimer:

- Sequana Medical is closely following the evolution of the COVID-19 global health crisis and is in constant dialogue with its partners to assess the impact and adapt its operations as necessary.
- Sequana Medical has put in place mitigation plans to minimise delays. The impact of increased demands on the healthcare systems, restrictions on non-essential hospital visits and procedures, social-distancing and travel restrictions may result in further delays to execution of clinical studies and impact sales.
- Sequana Medical will continue to update the market as needed and whenever possible.

Agenda and Presenters

09:00 – Ian Crosbie, CEO Sequana Medical

Welcome and Introduction

09:05 – Dr. Jeffrey Testani, Associate Professor at Yale University and Heart Failure Scientific Advisor of Sequana Medical

- Cardio-Renal Syndrome and Diuretic Resistance: Mechanism and Clinical Implications
- alfapump[®] DSR Potential Chronic Therapy for Heart Failure Patients with Fluid Overload that are Not Well Controlled on Diuretics

Dr. Jeffrey Testani, MTR

09:35 - Ian Crosbie, CEO

- Proven **alfa**pump platform in the Management of Fluid Overload
- Key Upcoming Milestones

09:40 – Q&A

Dr. Oliver Gödje, CMO

The challenge of diuretic resistance in the management of heart failure patients: The potential for alfapump[®] DSR therapy

> Jeffrey M. Testani, M.D., M.T.R. Associate Professor Director of Heart Failure Research Section of Cardiovascular Medicine Yale University New Haven, CT

Disclosures:

Grants and/or consulting fees from BMS, Lexicon, Sequana Medical, AstraZeneca, Novartis, 3ive Labs, Cardionomic, Bayer, Boehringer Ingelheim, MagentaMed, Otsuka, Reprieve Medical, Sanofi, FIRE1, Abbott, W.L. Gore, Windtree Therapeutics, Regeneron

Congestion is the major cause of and therapeutic target in HF Hospitalization

Yale school of medicine

Adapted from Nieminen, M et al Eur Heart J 2006

Congestion is the disease, not just a nuisance symptom

Yale school of medicine

Schrier, Seminars in Nephrology 2011;31:503

Volume overload is prognostically incredibly important in heart failure any way you measure it

- Physical exam
- Bioimpedance
- Natriuretic peptides
- IVC collapse
- Blood volume
- Weight gain
- Swan-Ganz parameters

Journal of Cardiac Failure Vol. 22 No. 3 2016

Clinical Investigation

Hemodynamic Predictors of Heart Failure Morbidity and Mortality: Fluid or Flow?

LAUREN B. COOPER, MD,^{1,2} ROBERT J. MENTZ, MD,^{1,2} SUSANNA R. STEVENS, MS,¹ G. MICHAEL FELKER, MD, MHS,^{1,2} CARLO LOMBARDI, MD,³ MARCO METRA, MD,³ LYNNE W. STEVENSON, MD,⁴ CHRISTOPHER M. O'CONNOR, MD,^{1,2} CARMELO A. MILANO, MD,^{1,5} CHETAN B. PATEL, MD,^{1,2} AND JOSEPH G. ROGERS, MD^{1,2}

Durham, North Carolina, USA; Brescia, Italy; Boston, Massachusetts, USA

Aggressive diuresis is associated with improved survival

CHAMPION trial of cardioMEMS illustrates the importance of chronic volume management

Rehospitalization

Death

Yale school of medicine

Abraham, Lancet 2011

Givertz, JACC 2017

CARDIOMEMS TECHNOLOGY

Having the sensor in the patient has no direct therapeutic value....it's the medication changes

Costanzo, JACC:HF 2016

Volume=Bad

Give a little Lasix

Live forever

We actually do a terrible job actually removing fluid from decompensated HF patients

Fonarow GC. Rev Cardiovasc Med. 2003

We actually do a terrible job actually removing fluid from decompensated HF patients

Fonarow GC. Rev Cardiovasc Med. 2003

Poor management of volume status also true in outpatients

Relation of Unrecognized Hypervolemia in Chronic Heart Failure to Clinical Status, Hemodynamics, and Patient Outcomes

Ana Silvia Androne, MD, Katarzyna Hryniewicz, MD, Alhakam Hudaihed, MD, Donna Mancini, MD, John Lamanca, PhD, and Stuart D. Katz, MD, MS

Blood volume determined in non-edematous stable outpatients

Yale school of medicine

Androne, AJC 2004

Not too surprising, mortality was worse in the expanded blood volume group

Yale school of medicine

Androne, AJC 2004

We talk about "volume overload" but it's really all about the sodium

- Sodium is the key driver of extracellular volume expansion
 - The kidney regulates extracellular volume by the quantity of sodium it reabsorbs
 - The fluid follows the sodium as the major extracellular osm
 - The kidney regulates water excretion primary to keep plasma osmolarity constant
 - Thus targeting sodium removal is key

It's actually all about the sodium

Furosemide results in dilute "watery" urine

Yale school of medicine

Hodson, JACC:HF 2019

If sodium/volume overload is so important, why is it we have so much untreated volume overload?

Diuretic resistance is nearly ubiquitous

Yale school of medicine

Testani et al, Circ HF 2014

Diuretic resistance is associated with mortality

Yale SCHOOL OF MEDICINE

Testani et al, Circ HF 2015

How do we treat this diuretic resistance

-more diuretics
- Unfortunately there is a large body of literature showing diuretics are associated with
 - Mortality
 - Rehospitalization
 - Kidney dysfunction
 - Electrolyte abnormalities
- These are dose dependent associations
 - The more diuretic you give the worse the patients seems to do

Some of this association may be causal

- The kidney "sees" salt through chloride entry into the macula densa through the Na-K-2Cl cotransporter
- This is the same transporter that loop diuretics antagonize

Net result is neurohormonal activation

Yale school of medicine

Francis et al, Ann Intern Med 1985;103:1

Neurohormonal activation is critical in HF: most of our proven therapies block it

So why do we see so much diuretic resistance?

- Teleology: A human is basically a bag of salt and water
 - Our ability to exist outside of the ocean depended on millions of years of evolution developing a system to keep the right amount of salt and water in this bag
- Given that human life can not exist if this system does not accomplish the above, the complexity and redundancy of this system is profound

Mechanism for diuretic resistance in HF: It's really "acute renal success"

- Diuretic is getting to the site of action
 - And in most patients it is blocking sodium reabsorption at the site of action
- Renal tubules downstream are just pumping all the salt back into the patient
 - This is exactly what the kidney is designed to do when it thinks the organism is dehydrated

Ter Maaten, EJHF 2017

Rao, JASN 2017

Which recent strategies have had positive clinical trials and improved our care of volume overload in HF?

-essentially none of them
- Closest was the DOSE-AHF trial
 - Technically negative study as primary endpoint (global assessment of symptoms) was not significant (p=0.06)
- **Design**: Randomized study of high dose vs. low dose furosemide
 - High dose strategy was 2.5X home diuretic dose (mg per mg)
 - Low dose strategy was 1X home dose
- DOSE trial results:
 - 1. More Lasix makes you pee a bit more than less Lasix
 - 4.9L vs. 3.6L net fluid loss
 - 2. More Lasix results in a higher rate of worsening renal function
 - 40% increase in >0.3 mg/dl increase in creatinine
 - 3. No difference in death or rehospitalization

List of recent failed "novel" agents

- Adenosine antagonists
- High dose nesiritide
- Low dose nesiritide
- Vasopressin antagonists
- Ularitide
- Renal dose dopamine
- Serelaxin
- An array of additional drugs and devices you never heard of
Mechanism of current (and failed) therapies?

Current therapies

- We don't have time to review why all the "novel" therapies failed
 - My short answer is they are all too distal in the sodium avidity pathway and the kidney outsmarts them
- I will briefly review some of the traditional therapies that are commonly used in clinical practice

Continuous loop diuretic infusion

Traditional teaching is that this works primarily by avoiding post-diuretic period of sodium retention

Yale school of medicine

Wilcox, J Lab Clin Med. 1983 Sep;102(3):450-8.

Continuous loop diuretic infusion

Traditional teaching is that this works primarily by avoiding post-diuretic period of sodium retention

Yale school of medicine

Wilcox, J Lab Clin Med. 1983 Sep;102(3):450-8.

Infusion "wastes" less diuretic with the high concentrations after a bolus

Yale school of medicine

Rudy, Annals of Internal Med, 1991

Adapted from Ellison, *Cardiology*. 2001;96(3-4):132-43.

Results of the DOSE trial:

- Double blind randomized trial of continuous infusion vs. bolus (n=308).
- Net fluid output at 72 hours:
 - Bolus: 4.24 L
 - Continuous: 4.25L
- No significant difference in LOS, dyspnea, freedom from congestion at 72 hours, treatment failure
- Post hoc analysis:
 - Patients with the highest baseline diuretic requirement (i.e. those with diuretic resistance) actually did the worst with continuous infusion

DOSE trial is not the only trial to show less than spectacular results:

Table 1 Characteristics of the randomized controlled trials included in the meta-analysis												
Author	Year	Population	Clinical setting	Study design	No. of patients	Mean age (y)	Loop diuretic	Duration of intervention (h)	Loading dose ^a	Prescribed furosemide (or equivalent) dose (mg/d)		Jadad score
										Continuous infusion	Intermittent infusion	
Copeland et al [14]	1983	Adults	Cardiac surgery	Parallel-arm	18	NR	Furosemide	12	No	90 ^b		1
Rudy et al [12]	1991	Adults	Chronic kidney disease	Cross-over	8	40.8	Bumetanide	12	Yes	960 ^b		1
Singh	1992	Children	Cardiac surgery	Parallel arm	20	1.9	Furosemide	24	Yes	4.9 ^c	6.2°	1
Lahav et al (20)	1992	Adults	Heart failure	Cross-over	9	74.1	Furosemide	48	Yes	90-120 ^b		1
Dormans et al [5]	1996	Adults	(classes III and IV ^d)	Cross-over	20	71.0	Furosemide	8	Yes	690 ^b		1
Kramer et al (10)	1996	Adults	Heart failure	Cross-over	8	53.4	Torsemide	24	Yes	200 ^b		1
Luciani et al (22)	1997	Children	Cardiac surgery	Parallel arm	26	0.3	Furosemide	24	Yes	2.5°	6.8 ^c	1
Klinge	1997	Children	Cardiac surgery	Parallel arm	46	2.8	Furosemide	72	No	2.1°	1.6°	2
Aaser	1997	Adults	Heart failure	Cross-over	8	54.0	Furosemide	24	No	145 ^b		1
Schuller	1997	Adults	Medical intensive	Parallel arm	33	64.0	Furosemide	24	Yes	320	320	1
Pivac	1998	Adults	Heart failure	Cross-over	20	62.2	Furosemide	24	No	80 ^b		1
Mojtahedzadeh	2004	Adults	Medical intensive	Parallel arm	22	NR	Furosemide	36	Yes	320	320	1
Ostermann et al [22]	2007	Adults	Medical and surgical intensive	Parallel arm	56	64.0	Furosemide	72	Yes	221	576	5
Sanjay	2008	Adults	Chronic kidney disease	Cross-over	42	53.6	Furosemide	4	Yes	360-1440 ^b		2
Kunt et al (15)	2009	Adults	Cardiac surgery	Parallel arm	100	65.6	Furosemide	24	No	240 ^b		4
Allen	2010	Adults	Acute decompensated	Parallel arm	41	59.5	Furosemide	24	No	162 ^b		3
Thomson	2010	Adults	Acute decompensated	Parallel arm	56	55.5	Furosemide	86-112	No	197	172	3
Felker et al [6]	2011	Adults	Acute decompensated heart failure	Parallel arm	308	66.0	Furosemide	72	No	160	198	5

Yale school of medicine

Alqahtani, J Crit Care, 2014

So why didn't it work?

 Lasix is a poison as far as the kidney is concerned so it fights back

Continuous exposure of the kidney to loop diuretic causes massive structural remodeling

Distal tubular cells

Yale school of medicine

Kaissling B Am J Physiol. 1985 :F374-81.

Possibly worsened outcomes!

Yale school of medicine

Felker, NEJM. 2011 Mar 3;364(9):797-805

Palazzuoli, Crit Care. 2014 Jun 28;18(3):R134

What do we do when high dose loop diuretic doesn't work: Adjuvant thiazides

- Observational data on thiazides found associations between thiazide use and:
 - Deterioration in renal function
 - Hyponatremia
 - Severe hypokalemia
 - Increased death/rehospitalization
- Some of this is driven by confounding by indication
 - Only the sickest patients receive thiazides

We have not been able to prove this.....

Yale school of medicine

Brisco-Bacik, JAHA 2018

Summary so far

- Volume overload is the primary driver of HF symptoms, hospitalization, and quite possibly mortality
- Despite billions in pharma research, no new therapies have been successful
- As a result, we continue to rely on loop diuretics despite
 - Direct dose dependent adverse effects
 - Rapid development of resistance
- We really need a non-renal method to control sodium and volume overload

The first non-renal volume management therapy for HF: Ultrafiltration

The first non-renal volume management therapy for HF: Ultrafiltration (UF)

• Pros:

- Non-renal approach to sodium removal
 - Thus not dependent on the kidney "cooperating" to get sodium out
- High sodium content fluid removed
- Large quantities of sodium can be removed
- Cons:
 - Requires venous access with high blood flow rate (usually large bore central)
 - Makes chronic therapy very challenging
 - High nursing demands to operate with traditional UF systems available in most hospitals
 - ICU level care with 1:1 nursing ratio
 - High consumable costs
 - Rate of fluid removal independent of excess amount of fluid patient has
 - This can lead "overshooting" with hemodynamic and renal complications

CARRESS HF dampened enthusiasm for UF:

- Demonstrated how hard this therapy was to use
- Despite this being conducted in the premiere HF centers of excellence
 - Delay of 8 hours from randomization to initiation of UF
 - UF was only 40 out of the 96 planned hours
 - ~10% of patients included in the intention to treat analysis for UF never actually received UF
 - 30% of subjects received intravenous diuretics during UF period

Results: Similar weight loss with worse renal function

Yale SCHOOL OF MEDICINE

Bart, N Engl J Med. 2012:2296-304

My diuretic resistance algorithm:

The peritoneum is an alternative "membrane" that can be used for ultrafiltration

- The peritoneal membrane is a large surface area natural membrane in the body that can be used for dialysis (toxin removal) or ultrafiltration (fluid and solute removal)
- Peritoneal dialysis (PD) is a commonly utilized for therapy for patients with ESRD which utilizes the peritoneal membrane

Why is peritoneal dialysis (PD) not used more frequently in HF?

- Standard PD has several limitations:
 - Large volumes (~8 to 10 liters) and long dwell times with the patient connected to PD cycler
 - External catheter with infection risks

– Dialysis stigma

- Only modest fluid and sodium removal with standard PD solutions
 - PD is designed primary to "clean" the blood rather than remove sodium

Can we use the peritoneal membrane more efficiently to directly remove sodium in HF patients?

Most HF patients have acceptably functioning kidneys

No need to "clean" the blood

- Standard PD solutions have ~7.5 grams of salt per liter
 - Nearly isotonic to plasma (~132 mmol/L)
 - Very small gradient for sodium to diffuse

Direct Sodium Removal (DSR) concept

- The salt is necessary in traditional PD solutions to make them safe to use to clean the blood
 - This is not needed for most HF patients
- With a zero sodium solution, we should be able to get much more sodium removal with less volume than standard PD fluid
 - In addition to ultrafiltration, we can capitalize on diffusion down a huge concentration gradient (~140mmol/L vs. 0 mmol/L)
- Lower volume of fluid allows for alternatives to the standard PD catheter to get fluid in and out of peritoneum

DSR: Proof of concept porcine experiment

- 1L instillation of 10% dextrose in water, zero sodium
- Dwell time of 6 hours

DSR: Osmotic gradient is maintained over time

DSR: Osmotic gradient is maintained over time

DSR: Osmotic gradient is maintained over time

DSR: Huge quantities of sodium can be removed

- 10L of 10% dextrose cycled over 6 hours
- 52.8 +/- 8.2 g of salt was removed
- 65% reduction in plasma volume

What happens in HF?

Substantially greater UF and salt removal in setting of HF

DSR first in human proof of concept: Design

• Design:

- Randomized open label crossover of DSR vs. standard PD solution
- Conducted in prevalent PD patients rather than normal subjects due to the risks of PD catheter placement
- Intervention:
 - DSR solution: Sodium free 10% dextrose
 - Standard PD solution: 4.25% dextrose standard PD solution (Dianeal, Baxter)
 - Both solutions are approximately 500 mOsm/L
 - 4.25% dextrose PD solution is the "strongest" commercially available product
 - One liter of either solution was infused into the peritoneum and left to dwell for 2 hours
 - Crossover to the alternate solution one week later
- Endpoints:
 - Primary: Safety/tolerability defined as completion of the 2-hour dwell without significant discomfort or AE
 - Secondary efficacy endpoint: Difference in sodium removal between DSR solution and standard PD solution

Primary endpoint: Safety and tolerability

- Primary endpoint:
 - All patients completed the 2 hour dwell without adverse event or significant discomfort causing protocol discontinuation
- Mild cramping during fluid instillation lasting <30 minutes occurred in 2 patients
 - One had cramping with DSR solution only
 - One had cramping with both solutions
 - Most patients stated instillation of the DSR solution felt the same as their standard PD solution
- Negligible removal of non-target solutes
 - Potassium (5.7 mmol)
 - Magnesium (1.1 mmol)
 - Phosphorus (2.0 mmol)
 - Calcium (1.7 mmol)
- Stable plasma electrolytes
- Absence of significant or sustained hyperglycemia

Secondary efficacy endpoint: Sodium removal was substantially greater with DSR

Proof of concept conclusion

- These data provide proof of concept that Direct Sodium Removal with a sodium-free peritoneal solution is feasible in humans
- Safety/tolerability:
 - Well tolerated
 - Minimal off target solute removal
 - Did not result in significant electrolyte disturbances or prolonged or severe hyperglycemia
- Efficacy:
 - Substantial sodium removal
 - Nearly 5 grams of sodium with a 2 hour treatment

alfapump[®] DSR – Potential chronic therapy for heart failure patients with fluid overload not well controlled on diuretics

Administration of sodium-free DSR infusate to peritoneal cavity via implanted port

Sodium diffuses into DSR infusate

alfapump pumps sodium-rich DSR infusate into the bladder

Body eliminates excess fluid through osmotic ultrafiltration and urination

RED DESERT study design Repeated dose proof-of-concept study of alfapump[®] DSR in up to 10 diuretic-resistant heart failure patients

* intravenous dose of 40mg dose furosemide

Safety: absence/rate of device, procedure and/or therapy related serious adverse events
Feasibility: ability of the alfapump DSR to maintain a neutral sodium balance and maintain euvolemia
Exploratory: impact of DSR to restore response to diuretics (diuretic challenge)

RED DESERT Interim results

- 5 participants have completed the study
- Main findings:
 - Repeated dose alfapump[®] DSR is well tolerated
 - Majority of patients lost weight and had reduction in natriuretic peptide levels
 - Despite volume loss all signs point toward improved renal function which is the opposite of what we see with diuretics
 - Loop diuretic response actually normalized in the majority of patients by the end of the study
 - Improved global sodium avidity of the patient
 - Most patients were not requiring full dose DSR by the end of therapy
 - Improvement in diuretic response durable for months in many patients
- Overall these preliminary findings provide optimism that alfapump DSR therapy is fundamentally improving the cardio-renal substrate of the patient
sequana medical

Innovators in the management of fluid overload

liver disease – malignant ascites – heart failure

sequana medical

Proven alfapump[®] **platform in the management of fluid overload**

alfapump – Liver disease / NASH

- ✓ CE mark + key clinical practice guidelines
- ✓ FDA breakthrough device designation
- ✓ Over 800 implants to date
- ✓ POSEIDON pivotal study in North America ongoing

Proven alfapump[®] **platform in the management of fluid overload**

alfapump – Liver disease / NASH

- ✓ CE mark + key clinical practice guidelines
- ✓ FDA breakthrough device designation
- ✓ Over 800 implants to date
- ✓ POSEIDON pivotal study in North America ongoing

alfapump DSR – Heart Failure

- ✓ Built on proven **alfa**pump platform
- ✓ Clinical proof-of-concept of Direct Sodium Removal (DSR)
- ✓ Results published in *Circulation*
- ✓ RED DESERT repeated dose study ongoing

alfapump® DSR development strategy*

* Timelines subject to further developments related to the ongoing COVID-19 pandemic

** Subject to change and/or feedback from applicable regulatory authorities

Expected core value drivers & outlook

sequanamedical